ECG Classification Using Wavelet Packet Entropy and Random Forests
نویسندگان
چکیده
The electrocardiogram (ECG) is one of the most important techniques for heart disease diagnosis. Many traditional methodologies of feature extraction and classification have been widely applied to ECG analysis. However, the effectiveness and efficiency of such methodologies remain to be improved, and much existing research did not consider the separation of training and testing samples from the same set of patients (so called inter-patient scheme). To cope with these issues, in this paper, we propose a method to classify ECG signals using wavelet packet entropy (WPE) and random forests (RF) following the Association for the Advancement of Medical Instrumentation (AAMI) recommendations and the inter-patient scheme. Specifically, we firstly decompose the ECG signals by wavelet packet decomposition (WPD), and then calculate entropy from the decomposed coefficients as representative features, and finally use RF to build an ECG classification model. To the best of our knowledge, it is the first time that WPE and RF are used to classify ECG following the AAMI recommendations and the inter-patient scheme. Extensive experiments are conducted on the publicly available MIT–BIH Arrhythmia database and influence of mother wavelets and level of decomposition for WPD, type of entropy and the number of base learners in RF on the performance are also discussed. The experimental results are superior to those by several state-of-the-art competing methods, showing that WPE and RF is promising for ECG classification.
منابع مشابه
A Comparison of Pattern Classification Approaches for Structural Damage Identification
A structural damage identification approach based on wavelet packet decomposition (WPD) and random forests (RF) was proposed and compared with other pattern classification approachs. The main procedure involves extracting energy features from vibration acceleration data through wavelet packet decomposition and then using these features as input for a RF classifier. The experiment was carried on...
متن کاملHeart Rate Variability Classification using Support Vector Machine and Genetic Algorithm
Background: Electrocardiogram (ECG) is defined as an electrical signal, which represents cardiac activity. Heart rate variability (HRV) as the variation of interval between two consecutive heartbeats represents the balance between the sympathetic and parasympathetic branches of the autonomic nervous system.Objective: In this study, we aimed to evaluate the efficiency of discrete wavelet transfo...
متن کاملAutomated Diagnosis of Myocardial Infarction ECG Signals Using Sample Entropy in Flexible Analytic Wavelet Transform Framework
Myocardial infarction (MI) is a silent condition that irreversibly damages the heart muscles. It expands rapidly and, if not treated timely, continues to damage the heart muscles. An electrocardiogram (ECG) is generally used by the clinicians to diagnose the MI patients. Manual identification of the changes introduced by MI is a time-consuming and tedious task, and there is also a possibility o...
متن کاملClassification of ECG signals using Hermite functions and MLP neural networks
Classification of heart arrhythmia is an important step in developing devices for monitoring the health of individuals. This paper proposes a three module system for classification of electrocardiogram (ECG) beats. These modules are: denoising module, feature extraction module and a classification module. In the first module the stationary wavelet transform (SWF) is used for noise reduction of ...
متن کاملWavelet Packet Entropy for Heart Murmurs Classification
Heart murmurs are the first signs of cardiac valve disorders. Several studies have been conducted in recent years to automatically differentiate normal heart sounds, from heart sounds with murmurs using various types of audio features. Entropy was successfully used as a feature to distinguish different heart sounds. In this paper, new entropy was introduced to analyze heart sounds and the feasi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Entropy
دوره 18 شماره
صفحات -
تاریخ انتشار 2016